APOLIPOPROTEIN VARIATION AND HUMAN DISEASE

Summary

Principal Investigator: Vassilis Zannis
Abstract: Alterations in apolipoprotein gene transcription may cause changes in plasma lipid and lipoprotein levels and in some instances may increase the risk of cardiovascular disease. The long-term objective of the proposed studies is to understand the mechanisms of transcriptional regulation of the human apolipoprotein genes in vivo. The rationale of our approach and our hypothesis is that if we understand the molecular events and the signal transduction pathway(s) which lead to gene activation, then we may be able to selectively regulate apolipoprotein and lipoprotein synthesis and thus regulate plasma lipids and lipoprotein levels for optimal health. As a model system for understanding gene regulation in cell cultures and in experimental animals, we will utilize the human apoA-I/apoCIII gene cluster. Key observations during the last five years have established that the -800/-590 apoCIII regulatory region is an intestinal enhancer and that nuclear receptors and SP1 play an important role in the regulation of the apoA-I and apoCIII genes. Our specific aims are: 1) To elucidate how activation of cJun and ATF-2 and HNF-4 cascades, via specific signal transduction, affect the expression of the human apoCIII gene in cell cultures. 2) To elucidate what combinations of promoter and enhancer elements determine the tissue-specific expression of the apoA-I and apoCIII genes in vivo using transgenic and knock-in mouse models. 3) To elucidate the contribution of different nuclear receptors as well as the transcription factors such as SP1 and C/EBP to the hepatic and intestinal expression of the human apoA- I and apoCIII genes in vivo using existing animal models, antisense methodologies and adenovirus mediated gene transfer. It is expected that the proposed studies will provide new insights into the mechanism of transcriptional regulation of the apoA-I and apo-CIII genes as well as general insights into hepatic and intestinal gene regulation. Increases in plasma apoA-I and HDL levels are associated with protection from cardiovascular disease. Alteration in apoCIII has been shown to affect the catabolism of triglyceride-rich lipoproteins. Thus the information obtained from this project may provide rational approaches towards correcting low plasma HDL levels and reducing hypertriglyceridemia in humans.
Funding Period: 1984-09-01 - 2005-04-30
more information: NIH RePORT

Top Publications

  1. ncbi Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice
    Angeliki Chroni
    Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 44:4108-17. 2005
  2. ncbi Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency
    Angeliki Chroni
    Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 44:14353-66. 2005
  3. ncbi Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL
    Vassilis I Zannis
    Molecular Genetics, Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
    J Mol Med (Berl) 84:276-94. 2006
  4. pmc A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice
    Konstantinos Drosatos
    Department of Basic Sciences, University of Crete Medical School, Heraklion GR 71110, Greece
    J Biol Chem 282:19556-64. 2007
  5. pmc Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein
    Konstantinos Drosatos
    Molecular Genetics, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 46:9645-53. 2007

Scientific Experts

  • Vassilis Zannis
  • Konstantinos Drosatos
  • Angeliki Chroni
  • Kyriakos E Kypreos
  • Horng Yuan Kan
  • Tong Liu
  • Dimitris Kardassis
  • Despina Sanoudou
  • Adelina Duka
  • Adelina Shkodrani

Detail Information

Publications5

  1. ncbi Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice
    Angeliki Chroni
    Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 44:4108-17. 2005
    ..We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis...
  2. ncbi Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency
    Angeliki Chroni
    Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Center for Advanced Biomedical Research, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 44:14353-66. 2005
    ..The findings indicate a critical contribution of residue 160 of apoA-I to the in vivo activity of LCAT and the subsequent maturation of HDL and explain the low HDL levels in heterozygous subjects carrying this mutation...
  3. ncbi Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL
    Vassilis I Zannis
    Molecular Genetics, Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
    J Mol Med (Berl) 84:276-94. 2006
    ....
  4. pmc A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice
    Konstantinos Drosatos
    Department of Basic Sciences, University of Crete Medical School, Heraklion GR 71110, Greece
    J Biol Chem 282:19556-64. 2007
    ....
  5. pmc Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein
    Konstantinos Drosatos
    Molecular Genetics, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
    Biochemistry 46:9645-53. 2007
    ..Substitution of these residues with Ala improves the apoE functions by preventing hypertriglyceridemia and promoting formation of spherical apoE-containing HDL...